

The Clarus System

Brenda Boyce, PMP Mixon Hill, Inc. Road Weather Stakeholder Meeting Albuquerque, New Mexico September 7, 2011

The Clarus Initiative: 4 Objectives

- Provide a North American resource to collect, quality check, and disseminate weather and road condition observations
- Demonstrate that these observations will support general purpose weather forecasting
- Demonstrate that the observations will support real-time operational responses to weather
- Support the enhancement and creation of models to improve forecasts at and near the earth's surface

Clarus Users in 2010

- 4993 unique addresses gaining access (3,524,702 hits) from 67 countries
 - government agencies (federal, state, local)
 - academic institutions
 - weather providers
 - TV stations
 - private sector firms
 - unknown sources (Internet providers, etc.)
- Clarus Users in 2009 314 unique addresses gaining access (59,000+ hits) from 19 countries

Clarus Users by Country

2010

- 1. United States
- 2. Ireland
- 3. Japan
- 4. Canada
- 5. Israel

1. United States

2011

- 2. Ireland
- 3. Canada
- 4. Unknown
- 5. Israel

Participation Status for *Clarus* as of August 24, 2011

10

Canadian Participation

Local Participation City of Indianapolis, IN McHenry County, IL City of Oklahoma City, OK Kansas Turnpike Authority

Parks Canada

<u>Sensor & Station Count</u> 2,253 Sensor Stations (ESS)

52,471 Individual Sensors

81 Vehicles

Clarus Connection Status

Connected (37 States, 5 Locals, 4 Provinces) Connected plus vehicles (1 state) Pending (4 States, 3 Locals, 1 Province)

Considering (3 States, 1 Local)

Complete Flag

- All tests that can be run have completed
- Why wouldn't a test run?
 - Not configured to run
 - Not enough data to run

Manual Flag

- Set by contributor to indicate "Don't necessarily trust this value"
- Set by contributor to indicate "Out of Service"

Sensor Range Test

- Observation compared to manufacturer's published minimum and maximum values
- Example:
 - Air Temperature: 25 C
 - Specs: -20 C to 50 C
 - Test Passed

Climate Range Test

- Observation compared to historical climate minimum and maximum values per month by geographic area – gridded field
- Example:
 - Air Temperature: 25 C
 - Climate Value for January: -10
 C to 20 C
 - Test did not pass

Step Test

- Observation compared to previous observations over a configured time range to determine if the rate of change (plus or minus) was acceptable
- Example:
 - Values: 10 C, 12 C, 15 C, 35 C
 - Test did not pass

Like Instrument Test

 Observation compared to the same observation types from the ESS

2010-03-23 17:26	essSurfaceTemperature (C)	9.50	0	1	0	0	0	0	0	0	
2010-03-23 17:26	essSurfaceTemperature (C)	10.30	0	Ŧ	0	0	0	0	0	0	00
2010-03-23 17:26	essSurfaceTemperature (C)	8.70	0	1	0	0	0	0	0	0	0.00
2010-03-23 17:26	essSurfaceTemperature (C)	8.70	0	1	0	0	0	0	0	0	6 30
	8	1	-	0-2	-	0	2		N.	14	- 10 - 23

Persistence Test

- Observation compared to previous observations to determine if the values had changed **at all** over a period of time
- Example:
 - Values: 38.6%, 38.6%, 38.7%
 - Test passed

Dewpoint Test

- Determine the neighbors
- Calculate a dewpoint value based on the temperature & relative humidity
- Conduct a spatial test

IQR Spatial Test

- Neighboring ESS and ASOS/AWOS identified
- Eliminate the neighbors that are +-350 meters
- Eliminate the highest and lowest neighboring values
- Observation compared to remaining neighbors to determine if they are similar
- Requires 5 initial neighbors for the test to run

Barnes Spatial Test

 Observation compared to neighboring ESS and ASOS/AWOS to determine if they are similar

Sea Level Pressure Test

- Calculate a sea level pressure from the station pressure and then conduct a spatial test
- Conversion based on current 700mb
 Rawinsonde
 observations or 30-year
 average gridded data

Precipitation Accumulation

- Applies to:
 - 3-hour
 - 6-hour
 - 12-hour
 - 24-hour
- Uses Stage II & IV precipitation files to accumulate the precipitation for comparison

Mobile Observations

- Data Need
 - Elevation
- Observations are on the map for one hour
- Used in quality checking

1

English

Non-mobile Mobile 1

Subscription File

Removed "ClimateId" – Replaced with "Category"

P – Permanent T – Transportable M - Mobile

Communication Notification

- Set up for "No File Received"
- Timing is configurable
- An email can be sent to one or more recipients – owner, vendor
- A file is attached that gives the number of observations received from each station over the past 24 hours

Google Earth – KML File

512-25

IA_State_DOT Jefferson (IA-4) 42.0518,-94.3783,310

ObsTypeName,ClarusSensorIndex,Timestamp,Observation,Units,EnglishValue,EnglishUnits,Confi

precipIntensity,0,2011-09-07 01:51:00,3.000,null,3.000,null,1.000,P,-,P/////////// precipintensity.0.2011-09-07 02:01:00.3.000.null.3.000.null.1.000.P.-P///////// precipType.0.2011-09-07 01:51:00.3.000.null.3.000.null.1.000.P.-P//////// precipType.0.2011-09-07 02:01:00.3.000.null.3.000.null.1.000.P.-.P./././././ essDewpointTemp.0.2011-09-07 01:51:00.9.700.C.49.460.F.1.000.P.-P.P.P./.P.-./// essDewpointTemp,0,2011-09-07 02:01:00,9 700, C,49,460, F,1.000, P,- P,P,P,P,P,- /// essRelativeHumidity0.2011-09-07 01:51:00.80.000,%.80.000,%.1.000,P.-P.P./.P.P././ essRelativeHumidity.0.2011-09-07 02:01:00.83.000,%.83.000,%.1.000,P.-,P.P.P./,P.-,P.// essPrecipRate 0.2011-09-07 01:51:00.0.000 cm/h.0.000 in/h.1.000.P.-P/.P/./.P.-/// essPrecipRate,0,2011-09-07 02:01:00,0.000,cm/h,0.000,in/h,1.000,P,-,P,/,P,/,/,P,-,/,/ essVisibility.0.2011-09-07 01:51:00.317.000,m.1040.026.ft,1.000,P.-P./.P././.P.-/./. essVisibility.0.2011-09-07 02:01:00.339 000 m 1112.205 ft 1.000 P-P/P//P-/// essAirTemperature,0,2011-09-07 01:51:00,13:000,C,55:400,F,1:000,P,-P,P,P,P,P,-/// essAirTemperature,0,2011-09-07 02:01:00,12.400,C,54.320,F,1.000,P,-,P,P,/,P,P,-,/,/ essSurfaceStatus,1,2011-09-07 01:51:00,3.000,null,3.000,null,1.000,P,-P,1/1/1/1/1 essSurfaceStatus.0.2011-09-07 01:51:00.3.000.null.3.000.null.1.000.P-.P///////// essSurfaceStatus,1,2011-09-07 02:01:00,3.000,null,3.000,null,1.000,P,-,P////////// essSurfaceStatus.0.2011-09-07 02:01:00.3.000.null.3.000.null.1.000.P.-P.///////// essSurfaceTemperature,0,2011-09-07 01:51:00,22,400,C,72,320,F,1.000,P,-P,P,P,P,P,-,/// essSurfaceTemperature, 1,2011-09-07 01:51:00,20,000,C,68,000,F,1.000,P,-P,P,P,P,P,-/// essSurfaceTemperature 1.2011-09-07 02:01:00.19 700.C.67 460 F.1.000.P.-P.P.P.P.P./// essSurfaceTemperature.0.2011-09-07 02:01:00.22.000.C.71.600.F.1.000.P.-P.P.P.P.P.-J./J essSubSurfaceTemperature.0.2011-09-07 01:51:00.25.600.C.78.080.F.1.000.P.-P.P.-P.-/// essSubSurfaceTemperature,0,2011-09-07 02:01:00,25.600,C,78.080,F,1.000,P,-P,P,-P,P-/// windSensorAvgSpeed.0.2011-09-07 01:51:00.0.000.m/s.0.000.mph.1.000.P.-P.P.P./.P.-./// windSensorAvgSpeed,0,2011-09-07 02:01:00,0.000,m/s,0.000,mph,1.000,P,-P,P,P,/,P,P,-/,// windSensorAvgDirection,0.2011-09-07 01:51:00.330.000.deg,330.000.deg,0.816.P.-P./N./.P.///// windSensorAvgDirection,0,2011-09-07 02:01:00,350.000,deg,350.000,deg,1.000,P,-,P/,P/,P//,// windSensorGustSpeed.0.2011-09-07 01:51:00.0.556.m/s.1.243.mph.1.000.P.-P/.P/.P.P.-/// windSensorGustSpeed,0,2011-09-07 02:01:00,0.278,m/s,0.621,mph,1.000,P,-P,/,P,/,P,P,-,/,/ windSensorGustDirection,0,2011-09-07 01:51:00,334.000,deg,334.000,deg,1.000,P.-P./P././// windSensorGustDirection.0.2011-09-07 02:01:00.351.000.deg.351.000.deg.1.000.P.-P./P././//

Contacts

Mixon Hill

- Brenda Boyce, PMP
 - 913-239-8400
 - Brenda.Boyce@mixonhill.com
- Chris Hill, Principal
 - 540-822-9717
 - Chris.Hill@mixonhill.com

U.S. DOT

- Paul Pisano
 - FHWA, Road Weather
 Management Team
 - 202-366-1301
 - <u>Paul.Pisano@dot.gov</u>